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The enantioselective Kinugasa reaction of nitrones with terminal alkynes in the presence of 20 mol % of
IndaBox-Cu(OTf), and di-sec-butylamine (1.5 equiv) produced B-lactams with the highest level of enan-
tiomeric excesses among the catalytic enantioselective Kinugasa reactions reported so far.
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B-Lactams' are an important class of compounds because of
their utility as antibiotics such as penicillins, cephalosporins,
monobactams, and carbapenems. In addition, chiral B-lactams also
serve as versatile building blocks for stereocontrollable synthesis
of complex organic compounds. Among a number of synthetic ap-
proaches to chiral B-lactams,'? the chiral ligand-Cu(I or II)-cata-
lyzed cycloaddition of nitrones with terminal alkynes (known as
the enantioselective Kinugasa reaction) has recently received
much attention.?

In 1972, Kinugasa and Hashimoto first reported the reaction be-
tween copper(I) phenylacetylide and nitrones in dry pyridine to
produce p-lactams.? In 1995, Miura et al. described the first cata-
lytic version of the Kinugasa reaction using bis-diph-
enylphosphinoalkane catalysts, and they also pioneered the
enantioselective Kinugasa reaction using 10-100 mol % of Cul-
bis(oxazoline) 1a-c catalysts in the reaction of phenylacetylene
(7a) with diphenylnitrone 8a to give cis-p-lactam (cis-9a) with
40-68% enantiomeric excesses (ees) and 30% diastereomeric ex-
cess (de) (Fig. 1).5 Fu and coauthors reported the C,-symmetric
bis(azaferrocene) 2-CuCl-catalyzed Kinugasa reaction, in which
they succeeded in achieving excellent cis:trans diastereoselectivity
(71:29 to >95:5 drs) and enantioselectivity (67-93% ees).® Tang
and co-workers demonstrated the pseudo Cs3-symmetric tris(oxaz-
oline) 3-Cu(lII)-catalyzed highly enantioselective (45-85% ees) and
diastereoselective (cis:trans = 97:3-67:33, 20:80-11:89) Kinugasa
reaction.” They stated that the Cu(ll) catalytic system is effective
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even under air atmosphere and without rigorously dry reaction
conditions. Shintani and Fu described the first examples of an
intramolecular enantioselective Kinugasa reaction using a P,N-
mixed ligand 4-CuBr complex to attain 85-91% ees.® Guiry et al.
also employed HETPHOX 5-Cu(I) as a P,N-mixed ligand complex
in the Kinugasa reaction; however, the enantioselectivities of the
predominant cis-B-lactams were only 4-48% ees with cis-selectiv-
ity (up to 88% de). -Proline-mediated Kinugasa reaction for syn-
thesis of exomethylene pB-lactams with up to 15% ee was
reported by Basak et al.'® Thus, only a very limited number of
the enantioselective Kinugasa reactions have appeared so far,'
and development of catalytic highly enantioselective Kinugasa
reactions is still a challenging task.

It is of value to find a potential ability of a simple and readily
available chiral ligand-metal complex inducing high enantioselec-
tivity in the Kinugasa reaction. In this context, IndaBox 6 would be
a candidate ligand for the chiral Lews acid-catalyzed Kinugasa
reaction.’” IndaBox 6 has received increasing attention among
C,-symmetric chiral bis(oxazoline) ligands.'> We have previously
found that the IndaBox 6a-Cu(Il) complex catalyst effectively in-
duces high enantioselectivities in a hetero-Diels-Alder reaction
of 1-thiabutadienes'® and 1,3-dipolar cycloaddition of nitrones
with 3-alkenoyl-2-oxazolidinones.'®> These findings suggested to
us that the IndaBox 6-Cu(lII)-catalytic system would be applicable
to a Kinugasa reaction that must be carried out under Lewis base
conditions.'? We report here the catalytic, highly enantioselective
Kinugasa reaction using IndaBox 6 as the homochiral ligand.

In initial studies, we selected the reaction of phenylacetylene
(7a) with CN-diphenylnitrone 8a as the model reaction using
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Figure 1. Chiral ligands used in the Kinugasa reaction.

6-Cu(I or II) chiral catalyst (Y mol %) and an amine (Z equiv) under
the conditions (solvent, temperature, and time) listed in Table 1
(Scheme 1). First, in order to evaluate the IndaBox ligands 6a-c,
the model reaction between 7a and 8a was carried out in the pres-
ence of 20 mol % 6a-c-Cu(Cl0,4),-6H,0 and 1.0 equiv dicyclohexyl-
amine (Cy,NH) in dichloromethane at room temperature (20 °C)
(entries 1-3).” p-Lactam 9a was obtained (42%, 49%, and 51%
yields) in cis:trans ratios of 85:15-86:14 with 78%, 67%, and 69%
ees of the cis-isomer, respectively. Thus, IndaBox 6a gave the best
enantioselectivity. We next examined 6a-Cu(l) salt complexes in
the Kinugasa reaction (entries 4-7) because Fu et al. achieved high
enantioselectivity (77% ee for 9a) using the CuCl-2 complex.® Cop-
per(I) halides gave high cis-selectivities (95:5-86:14) but moder-
ate enantioselectivities (53-23% ees) (entries 4-6), with no B-
lactam (9a) being formed with CuOTf (entry 7). The Cu(OTf),-6a
catalyst was found to be the best choice among the copper salts
examined, giving 84:16 cis:trans selectivity and 82% ee (entry 8).

Next, screening of amines as a base was performed. Primary
amines RNH; (R =n-Pr, Cy), secondary amines R,NH (R = Et, i-Pr,
n-Bu, n-Oct, piperidine, and morpholine), and triethylamine
showed low to moderate enantioselectivities (15-71% ees) and
cis:trans selectivities (86-61:14-39). Gratifyingly, di-sec-butyl-
amine (s-Bu,NH) gave high enantio- and diastereoselectivities

Ph_ _H Y mol % Cu(l) or Cu(lly Ph Ph Ph, Ph
Pho— 7\[,\11’ 1.1Y mol % 6 j;Nf . J;Nf
O"+"Ph 7 equiv amine o] ‘Ph o] 'Ph
7a 8a cis-9a trans-9a
Scheme 1.
Table 2

Catalytic enantioselective Kinugasa reaction: variation of the nitrone N-aryl
substituent R

Entry 8 R Time (h) Adduct Yield® (%) Cis:trans®  Cis ee€ (%)
1 8a H 38 9a 47 85:15 90
2 8b Me 136 9b 41 81:19 89
3 8c MeO 135 9c 40 79:21 93
4 8d dl 106 9d 49 86:14 79
5 8e EtO,C 138 9e 72 83:17 81

? Total yield of cis- and trans-isomers.
b Determined by 'H NMR.
¢ Determined by chiral HPLC.

(82% ee and cis:trans 84:16, entry 9), which are comparable with
the results (Cy,NH) in entry 8. When the reaction using 1.5 equiv
amounts of s-Bu,NH was carried out, a high level of enantioselec-
tivity (85% ee) and diastereoselectivity (cis:trans 84:16) was ob-
tained (entry 10), but the use of an excess amount (2.0 equiv) of
the amine resulted in reduction of both yield and enantioselectiv-
ity (21%, 69% ee).

Optimization of the solvents (entries 10-14) led us to find
somewhat higher enantioselectivity (87% ee) with good diastere-
oselectivity (cis:trans 84:16) when using isopropyl acetate (entry

4). The reaction at a higher temperature (40 °C) shortened the
reaction time (to 1 h) with slight reduction of both the stereoselec-
tivities (83% ee, cis:trans 83:17) (entry 15). Finally, when the reac-
tion at 5 °C in i-PrOAc was performed using a 20 mol % Cu(OTf),-6a
catalyst and 1.5 equiv s-Bu,NH, the highest enantioselectivity (90%
ee) of cis-isomer 9a was attained in a cis:trans ratio of 85:15 (entry
16). The amounts of the catalyst could be reduced to 15 mol % or
10 mol % while maintaining a good enantiomeric excess of 88%
ee (entry 17) or 85% ee (entry 18), respectively.

Under the optimized reaction conditions (Table 1, entry 16), the
reaction of phenylacetylene (7a) with nitrones 8 with variation of

Table 1
Screening of the copper catalysts and amines and optimization of the reaction conditions
Entry Ligand Cu(I) or Cu(II) Y (mol %) Amine Z (Equiv) Solvent Temp (°C) Time (h) Yield® (%) Cis:trans® Cis ee® (%)
1 6a Cu(ClOy4),-6H,0 20 Cy>NH 1.0 CH,Cl, 20 14 42 85:15 78
2 6b Cu(Cl0y4),-6H,0 20 Cy,NH 1.0 CH,Cl, 20 21 49 85:15 67
3 6¢ Cu(Cl0y4),-6H,0 20 Cy,NH 1.0 CH,Cl, 20 22 51 86:14 69
4 6a CuCl 20 Cy,NH 1.0 CH,Cl, 20 17 58 95:5 53
5 6a CuBr 20 Cy,NH 1.0 CH,Cl, 20 6 55 92:8 35
6 6a Cul 20 Cy,NH 1.0 CH,Cl, 20 8 50 86:14 23
7 6a CuOTf 20 Cy,NH 1.0 CH,Cl, 20 8 0 - -
8 6a Cu(OTf), 20 Cy2NH 1.0 CH,Cl, 20 15 32 84:16 82
9 6a Cu(OTf), 20 s-Bu,NH 1.0 CH,Cl, 20 21 40 84:16 82
10 6a Cu(OTf), 20 s-Bu,NH 1.5 CH,Cl, 20 14 32 84:16 85
11 6a Cu(OTf), 20 s-Bu,NH 1.5 PhMe 20 28 40 77:23 68
12 6a Cu(OTf), 20 s-Bu,NH 1.5 THF 20 16 60 78:22 75
13 6a Cu(OTf), 20 s-Bu,NH 1.5 MeCN 20 5 61 91:9 18
14 6a Cu(OTf), 20 s-Bu,NH 1.5 iPrOAc 20 14 39 84:16 87
15 6a Cu(OTf), 20 s-Bu,NH 1.5 i-PrOAc 40 1 30 83:17 83
16 6a Cu(OTf), 20 s-Bu,NH 1.5 i-PrOAc 5 38 47 85:15 90
17 6a Cu(OTf), 15 s-Bu,NH 1.5 i-PrOAc 5 46 47 82:18 88
18 6a Cu(OTf), 10 s-Bu,NH 1.5 i-PrOAc 5 65 41 84:16 85

@ Total yield of cis- and trans-isomers.
> Determined by 'H NMR.
¢ Determined by chiral HPLC.
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Table 3
Catalytic enantioselective Kinugasa reaction: variation of the nitrone C-aryl
substituent R

Entry 8 R Time (h) Adduct Yield® (%) Cis:trans®  Cis eeC (%)
1 8 H 38 9a 47 85:15 90
2 8f Me 48 9f 50 80:20 92
3 8 MeO 40 9g 64 84:16 87
4 8h Br 48 9h 45 87:13 81
5 8i CFs 48 9i 41 84:16 92
6 8§ NO, 37 9j 47 84:16 94

@ Total yield of cis- and trans-isomers.
> Determined by 'H NMR.
¢ Determined by chiral HPLC.
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Scheme 3.

N-aryl substituents R was examined (Scheme 2). The results are
shown in Table 2. The electron-withdrawing N-aryl substituent
(R=Cl, EtO,C) lowered the enantioselectivity to 79% and 81% ee
(entries 4 and 5) compared with the phenyl and p-tolyl groups
(R=H, Me entry 1 and 2, 90% and 89% ees), whereas the elec-

Ph H 20 mol % Cu(OTf), R Ph R Ph
hig 22 mol % 6a ..
R—= + -~ .

C_)"E"Ph 1.5 equiv s-Bu,NH N, N,
i-PrOAc (¢} Ph O Ph
5°C _

7 8a cis-9 trans-9
Scheme 4.

tron-donating p-MeOCgH,4 substituent showed the highest 93% ee
(entry 3). Because the reaction of 7a with nitrones 8 bearing an al-
kyl substituent such as methyl or benzyl group failed, an N-aryl
substituent seems to be necessary for the reaction, which is com-
patible with Fu’s and Tang’s results.%”’

The nitrone C-aryl substituent effects were also examined
(Scheme 3, Table 3). In these cases, the strongly electron-with-
drawing substituents (R = CF3, NO;) showed the highest level of
enantioselectivity (entries 5 and 6, 92% ee and 94% ee), in contrast
to slight lowering by the p-MeO group (87% ee, entry 3). The p-bro-
mo group was as low as 81% ee.

Finally, the scope with respect to the alkyne component 7 was
probed (Scheme 4, Table 4). The electron-donating p-tolyl and p-
MeOCgH, substituents showed the highest level of enantioselectiv-
ity (93% and 94% ees, entries 2 and 3). Although, in the case of the
p-BrCgH,4 and p-CF3CgH,4 substituents, the cis-isomer was the major
product (76:24 and 72:28, entries 4 and 5), the much more elec-
tron-withdrawing substituent (R = p-NO,CgH,) clearly affects the
cis:trans diastereoselectivity (18:82, entry 6). In contrast, trans-
isomer was formed as the major B-lactam while maintaining a high
level of enantioselectivity. Because of the fact that separated cis-90
with 86% ee was completely transformed into trans-90 maintain-
ing 86% ee after addition of an amine (s-Bu,NH) or left under the
same reaction conditions, it is likely that the initially formed cis-
isomer bearing an electron-withdrawing substituent (R) epimeriz-
es highly selectively at the acidic 3-CH, o to the lactam carbonyl
group, to the thermodynamically more stable trans-isomer while
maintaining high enantioselectivity.>!® Similarly, the reaction of
ethyl propiolate (7g) produced trans-isomer 9p only (54%) but, in
this case, with low enantioselectivity (32% ee, entry 7). The reac-
tion of aliphatic acetylene, 1-cyclohexenylacetylene (7h), gave 9q
(31%) in a cis:trans ratio of 83:17 with high enantioselectivity
(83% ee, entry 8).

Although in the present reaction chemical yields and diastere-
oselectivities were not improved, the highest level of enantioselec-
tivities were attained using the Cu(OTf), complex with the simple
and readily available C,-symmetric IndaBox ligand (6a) (commer-
cially and cheaply available) and the optimal amine under the
optimized reaction conditions.

Table 4
Catalytic enantioselective Kinugasa reaction: variation of the alkyne substituent R
Entry 7 R Time (h) Adduct Yield® (%) Cis:trans® Cis ee€ (%)
1 7a Ph 38 9a 47 85:15 90
2 7b p-MeCgH, 21 9k 38 63:37 93
3 7c p-MeOCgH4 90 91 40 83:17 94
4 7d p-BrCgHy 336 9m 38 76:24 88
5 7e p-CF3CeHy 25 9n 55 72:28 91
6 7f p-NO,CsHa 64 9 51 18:82 864
7 7g EtO,C 0.1 9p 54 Trans only 324
8 7h 1-Cyclohexenyl 36 9q 31 83:17 83

@ Total yield of cis- and trans-isomers.

b Determined by 'H NMR.

¢ Determined by chiral HPLC.

d

ee for trans-isomer.
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Supplementary data

Supplementary data (experimental procedure, full entries data

of Table 1, 'H and '>C NMR spectral data, compounds characteriza-
tion data, and chiral HLPC copies of compounds 9) associated with
this article can be found, in the online version, at doi:10.1016/
j-tetlet.2009.06.050.
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