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The enantioselective Kinugasa reaction of nitrones with terminal alkynes in the presence of 20 mol % of
IndaBox–Cu(OTf)2 and di-sec-butylamine (1.5 equiv) produced b-lactams with the highest level of enan-
tiomeric excesses among the catalytic enantioselective Kinugasa reactions reported so far.

� 2009 Published by Elsevier Ltd.
b-Lactams1 are an important class of compounds because of
their utility as antibiotics such as penicillins, cephalosporins,
monobactams, and carbapenems. In addition, chiral b-lactams also
serve as versatile building blocks for stereocontrollable synthesis
of complex organic compounds. Among a number of synthetic ap-
proaches to chiral b-lactams,1,2 the chiral ligand–Cu(I or II)-cata-
lyzed cycloaddition of nitrones with terminal alkynes (known as
the enantioselective Kinugasa reaction) has recently received
much attention.3

In 1972, Kinugasa and Hashimoto first reported the reaction be-
tween copper(I) phenylacetylide and nitrones in dry pyridine to
produce b-lactams.4 In 1995, Miura et al. described the first cata-
lytic version of the Kinugasa reaction using bis-diph-
enylphosphinoalkane catalysts, and they also pioneered the
enantioselective Kinugasa reaction using 10–100 mol % of CuI–
bis(oxazoline) 1a–c catalysts in the reaction of phenylacetylene
(7a) with diphenylnitrone 8a to give cis-b-lactam (cis-9a) with
40–68% enantiomeric excesses (ees) and 30% diastereomeric ex-
cess (de) (Fig. 1).5 Fu and coauthors reported the C2-symmetric
bis(azaferrocene) 2–CuCl-catalyzed Kinugasa reaction, in which
they succeeded in achieving excellent cis:trans diastereoselectivity
(71:29 to >95:5 drs) and enantioselectivity (67–93% ees).6 Tang
and co-workers demonstrated the pseudo C3-symmetric tris(oxaz-
oline) 3–Cu(II)-catalyzed highly enantioselective (45–85% ees) and
diastereoselective (cis:trans = 97:3–67:33, 20:80–11:89) Kinugasa
reaction.7 They stated that the Cu(II) catalytic system is effective
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even under air atmosphere and without rigorously dry reaction
conditions. Shintani and Fu described the first examples of an
intramolecular enantioselective Kinugasa reaction using a P,N-
mixed ligand 4–CuBr complex to attain 85–91% ees.8 Guiry et al.
also employed HETPHOX 5–Cu(I) as a P,N-mixed ligand complex
in the Kinugasa reaction; however, the enantioselectivities of the
predominant cis-b-lactams were only 4–48% ees with cis-selectiv-
ity (up to 88% de).9 L-Proline-mediated Kinugasa reaction for syn-
thesis of exomethylene b-lactams with up to 15% ee was
reported by Basak et al.10 Thus, only a very limited number of
the enantioselective Kinugasa reactions have appeared so far,11

and development of catalytic highly enantioselective Kinugasa
reactions is still a challenging task.

It is of value to find a potential ability of a simple and readily
available chiral ligand–metal complex inducing high enantioselec-
tivity in the Kinugasa reaction. In this context, IndaBox 6 would be
a candidate ligand for the chiral Lews acid-catalyzed Kinugasa
reaction.12 IndaBox 6 has received increasing attention among
C2-symmetric chiral bis(oxazoline) ligands.13 We have previously
found that the IndaBox 6a–Cu(II) complex catalyst effectively in-
duces high enantioselectivities in a hetero-Diels–Alder reaction
of 1-thiabutadienes14 and 1,3-dipolar cycloaddition of nitrones
with 3-alkenoyl-2-oxazolidinones.15 These findings suggested to
us that the IndaBox 6–Cu(II)-catalytic system would be applicable
to a Kinugasa reaction that must be carried out under Lewis base
conditions.12 We report here the catalytic, highly enantioselective
Kinugasa reaction using IndaBox 6 as the homochiral ligand.

In initial studies, we selected the reaction of phenylacetylene
(7a) with C,N-diphenylnitrone 8a as the model reaction using
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Figure 1. Chiral ligands used in the Kinugasa reaction.

Table 2
Catalytic enantioselective Kinugasa reaction: variation of the nitrone N-aryl
substituent R

Entry 8 R Time (h) Adduct Yielda (%) Cis:transb Cis eec (%)

1 8a H 38 9a 47 85:15 90
2 8b Me 136 9b 41 81:19 89
3 8c MeO 135 9c 40 79:21 93
4 8d Cl 106 9d 49 86:14 79
5 8e EtO2C 138 9e 72 83:17 81

a Total yield of cis- and trans-isomers.
b Determined by 1H NMR.
c Determined by chiral HPLC.
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6–Cu(I or II) chiral catalyst (Y mol %) and an amine (Z equiv) under
the conditions (solvent, temperature, and time) listed in Table 1
(Scheme 1). First, in order to evaluate the IndaBox ligands 6a–c,
the model reaction between 7a and 8a was carried out in the pres-
ence of 20 mol % 6a–c–Cu(ClO4)2�6H2O and 1.0 equiv dicyclohexyl-
amine (Cy2NH) in dichloromethane at room temperature (20 �C)
(entries 1–3).7 b-Lactam 9a was obtained (42%, 49%, and 51%
yields) in cis:trans ratios of 85:15–86:14 with 78%, 67%, and 69%
ees of the cis-isomer, respectively. Thus, IndaBox 6a gave the best
enantioselectivity. We next examined 6a–Cu(I) salt complexes in
the Kinugasa reaction (entries 4–7) because Fu et al. achieved high
enantioselectivity (77% ee for 9a) using the CuCl–2 complex.6 Cop-
per(I) halides gave high cis-selectivities (95:5–86:14) but moder-
ate enantioselectivities (53–23% ees) (entries 4–6), with no b-
lactam (9a) being formed with CuOTf (entry 7). The Cu(OTf)2–6a
catalyst was found to be the best choice among the copper salts
examined, giving 84:16 cis:trans selectivity and 82% ee (entry 8).

Next, screening of amines as a base was performed. Primary
amines RNH2 (R = n-Pr, Cy), secondary amines R2NH (R = Et, i-Pr,
n-Bu, n-Oct, piperidine, and morpholine), and triethylamine
showed low to moderate enantioselectivities (15–71% ees) and
cis:trans selectivities (86–61:14–39). Gratifyingly, di-sec-butyl-
amine (s-Bu2NH) gave high enantio- and diastereoselectivities
Table 1
Screening of the copper catalysts and amines and optimization of the reaction conditions

Entry Ligand Cu(I) or Cu(II) Y (mol %) Amine Z (Equiv)

1 6a Cu(ClO4)2�6H2O 20 Cy2NH 1.0
2 6b Cu(ClO4)2�6H2O 20 Cy2NH 1.0
3 6c Cu(ClO4)2�6H2O 20 Cy2NH 1.0
4 6a CuCl 20 Cy2NH 1.0
5 6a CuBr 20 Cy2NH 1.0
6 6a CuI 20 Cy2NH 1.0
7 6a CuOTf 20 Cy2NH 1.0
8 6a Cu(OTf)2 20 Cy2NH 1.0
9 6a Cu(OTf)2 20 s-Bu2NH 1.0

10 6a Cu(OTf)2 20 s-Bu2NH 1.5
11 6a Cu(OTf)2 20 s-Bu2NH 1.5
12 6a Cu(OTf)2 20 s-Bu2NH 1.5
13 6a Cu(OTf)2 20 s-Bu2NH 1.5
14 6a Cu(OTf)2 20 s-Bu2NH 1.5
15 6a Cu(OTf)2 20 s-Bu2NH 1.5
16 6a Cu(OTf)2 20 s-Bu2NH 1.5
17 6a Cu(OTf)2 15 s-Bu2NH 1.5
18 6a Cu(OTf)2 10 s-Bu2NH 1.5

a Total yield of cis- and trans-isomers.
b Determined by 1H NMR.
c Determined by chiral HPLC.
(82% ee and cis:trans 84:16, entry 9), which are comparable with
the results (Cy2NH) in entry 8. When the reaction using 1.5 equiv
amounts of s-Bu2NH was carried out, a high level of enantioselec-
tivity (85% ee) and diastereoselectivity (cis:trans 84:16) was ob-
tained (entry 10), but the use of an excess amount (2.0 equiv) of
the amine resulted in reduction of both yield and enantioselectiv-
ity (21%, 69% ee).

Optimization of the solvents (entries 10–14) led us to find
somewhat higher enantioselectivity (87% ee) with good diastere-
oselectivity (cis:trans 84:16) when using isopropyl acetate (entry
14). The reaction at a higher temperature (40 �C) shortened the
reaction time (to 1 h) with slight reduction of both the stereoselec-
tivities (83% ee, cis:trans 83:17) (entry 15). Finally, when the reac-
tion at 5 �C in i-PrOAc was performed using a 20 mol % Cu(OTf)2–6a
catalyst and 1.5 equiv s-Bu2NH, the highest enantioselectivity (90%
ee) of cis-isomer 9a was attained in a cis:trans ratio of 85:15 (entry
16). The amounts of the catalyst could be reduced to 15 mol % or
10 mol % while maintaining a good enantiomeric excess of 88%
ee (entry 17) or 85% ee (entry 18), respectively.

Under the optimized reaction conditions (Table 1, entry 16), the
reaction of phenylacetylene (7a) with nitrones 8 with variation of
Solvent Temp (�C) Time (h) Yielda (%) Cis:transb Cis eec (%)

CH2Cl2 20 14 42 85:15 78
CH2Cl2 20 21 49 85:15 67
CH2Cl2 20 22 51 86:14 69
CH2Cl2 20 17 58 95:5 53
CH2Cl2 20 6 55 92:8 35
CH2Cl2 20 8 50 86:14 23
CH2Cl2 20 8 0 — —
CH2Cl2 20 15 32 84:16 82
CH2Cl2 20 21 40 84:16 82
CH2Cl2 20 14 32 84:16 85
PhMe 20 28 40 77:23 68
THF 20 16 60 78:22 75
MeCN 20 5 61 91:9 18
iPrOAc 20 14 39 84:16 87
i-PrOAc 40 1 30 83:17 83
i-PrOAc 5 38 47 85:15 90
i-PrOAc 5 46 47 82:18 88
i-PrOAc 5 65 41 84:16 85
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Table 3
Catalytic enantioselective Kinugasa reaction: variation of the nitrone C-aryl
substituent R

Entry 8 R Time (h) Adduct Yielda (%) Cis:transb Cis eec (%)

1 8a H 38 9a 47 85:15 90
2 8f Me 48 9f 50 80:20 92
3 8g MeO 40 9g 64 84:16 87
4 8h Br 48 9h 45 87:13 81
5 8i CF3 48 9i 41 84:16 92
6 8j NO2 37 9j 47 84:16 94

a Total yield of cis- and trans-isomers.
b Determined by 1H NMR.
c Determined by chiral HPLC.
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N-aryl substituents R was examined (Scheme 2). The results are
shown in Table 2. The electron-withdrawing N-aryl substituent
(R = Cl, EtO2C) lowered the enantioselectivity to 79% and 81% ee
(entries 4 and 5) compared with the phenyl and p-tolyl groups
(R = H, Me entry 1 and 2, 90% and 89% ees), whereas the elec-
Table 4
Catalytic enantioselective Kinugasa reaction: variation of the alkyne substituent R

Entry 7 R Time (h)

1 7a Ph 38
2 7b p-MeC6H4 21
3 7c p-MeOC6H4 90
4 7d p-BrC6H4 336
5 7e p-CF3C6H4 25
6 7f p-NO2C6H4 64
7 7g EtO2C 0.1
8 7h 1-Cyclohexenyl 36

a Total yield of cis- and trans-isomers.
b Determined by 1H NMR.
c Determined by chiral HPLC.
d ee for trans-isomer.
tron-donating p-MeOC6H4 substituent showed the highest 93% ee
(entry 3). Because the reaction of 7a with nitrones 8 bearing an al-
kyl substituent such as methyl or benzyl group failed, an N-aryl
substituent seems to be necessary for the reaction, which is com-
patible with Fu’s and Tang’s results.6,7

The nitrone C-aryl substituent effects were also examined
(Scheme 3, Table 3). In these cases, the strongly electron-with-
drawing substituents (R = CF3, NO2) showed the highest level of
enantioselectivity (entries 5 and 6, 92% ee and 94% ee), in contrast
to slight lowering by the p-MeO group (87% ee, entry 3). The p-bro-
mo group was as low as 81% ee.

Finally, the scope with respect to the alkyne component 7 was
probed (Scheme 4, Table 4). The electron-donating p-tolyl and p-
MeOC6H4 substituents showed the highest level of enantioselectiv-
ity (93% and 94% ees, entries 2 and 3). Although, in the case of the
p-BrC6H4 and p-CF3C6H4 substituents, the cis-isomer was the major
product (76:24 and 72:28, entries 4 and 5), the much more elec-
tron-withdrawing substituent (R = p-NO2C6H4) clearly affects the
cis:trans diastereoselectivity (18:82, entry 6). In contrast, trans-
isomer was formed as the major b-lactam while maintaining a high
level of enantioselectivity. Because of the fact that separated cis-9o
with 86% ee was completely transformed into trans-9o maintain-
ing 86% ee after addition of an amine (s-Bu2NH) or left under the
same reaction conditions, it is likely that the initially formed cis-
isomer bearing an electron-withdrawing substituent (R) epimeriz-
es highly selectively at the acidic 3-CH, a to the lactam carbonyl
group, to the thermodynamically more stable trans-isomer while
maintaining high enantioselectivity.5,16 Similarly, the reaction of
ethyl propiolate (7g) produced trans-isomer 9p only (54%) but, in
this case, with low enantioselectivity (32% ee, entry 7). The reac-
tion of aliphatic acetylene, 1-cyclohexenylacetylene (7h), gave 9q
(31%) in a cis:trans ratio of 83:17 with high enantioselectivity
(83% ee, entry 8).

Although in the present reaction chemical yields and diastere-
oselectivities were not improved, the highest level of enantioselec-
tivities were attained using the Cu(OTf)2 complex with the simple
and readily available C2-symmetric IndaBox ligand (6a) (commer-
cially and cheaply available) and the optimal amine under the
optimized reaction conditions.
Adduct Yielda (%) Cis:transb Cis eec (%)

9a 47 85:15 90
9k 38 63:37 93
9l 40 83:17 94
9m 38 76:24 88
9n 55 72:28 91
9o 51 18:82 86d

9p 54 Trans only 32d

9q 31 83:17 83
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Supplementary data

Supplementary data (experimental procedure, full entries data
of Table 1, 1H and 13C NMR spectral data, compounds characteriza-
tion data, and chiral HLPC copies of compounds 9) associated with
this article can be found, in the online version, at doi:10.1016/
j.tetlet.2009.06.050.
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